Cerebellar glutamine synthetase in children after hypoxia or ischemia.
نویسندگان
چکیده
BACKGROUND Glutamate has been implicated in the pathophysiology of acute hypoxic-ischemic encephalopathy. Glutamine synthetase is an enzyme found in astrocytes that converts glutamate to its nontoxic analogue, glutamine. The present study tests the hypothesis that brain glutamine synthetase activity increases in response to acute hypoxic-ischemic insults and not in response to chronic hypoxia-ischemia or non-hypoxic-ischemic neurological disease. SUMMARY OF REPORT Frozen sections of cerebellum from children who died with acute or chronic hypoxic-ischemic insults or chronic non-hypoxic-ischemic neurological disease were spectrophotometrically assayed for glutamine synthetase activity by an observer who was blinded to the clinical group assignment of each specimen. Enzyme activity was elevated in specimens from children with acute hypoxic-ischemic insults (mean 6.5; range 5.4-7.2 units/g wet tissue wt) as compared with those from patients with chronic hypoxia-ischemia (mean 2.8; range 0.7-10.2 units/g wet tissue wt) or with non-hypoxic-ischemic neurological disease (mean 2.6; range 1.3-3.9 units/g wet tissue wt). This difference was not due to differences in the degree of histological astrocytosis or edema among the specimens. Statistical analysis by the Kruskal-Wallis one-way analysis of variance by ranks test indicates that the three data groups do not come from one population (p less than 0.05). CONCLUSIONS These results support the notion that glutamine synthetase activity increases in response to acute hypoxic-ischemic nervous system injury in children and that other compensatory mechanisms prevail in the case of chronic hypoxic-ischemic insults.
منابع مشابه
Forebrain Ischemia in Rats
Background and Purpose: Attempts have been made to characterize conditions under which oxygen free radicals contribute to ischemic brain damage. According to one hypothesis, free radicals are likely mediators of damage only when ischemia is of such long duration that infarction develops or when either preischemic hyperglycemia or hyperthermia is present. The objective of the present study was t...
متن کاملNitric Oxide (no), Citrulline - No Cycle Enzymes, Glutamine Synthetase and Oxidative Stress in Anoxia (hypobaric Hypoxia) and Reperfusion in Rat Brain
Nitric oxide is postulated to be involved in the pathophysiology of neurological disorders due to hypoxia/ anoxia in brain due to increased release of glutamate and activation of N-methyl-D-aspartate receptors. Reactive oxygen species have been implicated in pathophysiology of many neurological disorders and in brain function. To understand their role in anoxia (hypobaric hypoxia) and reperfusi...
متن کاملNeuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia
Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...
متن کاملOxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain.
Free radical-mediated oxidative damage has been implicated in tissue injury resulting from ischemia/reperfusion events. Global cortical ischemia/reperfusion injury to Mongolian gerbil brains was produced by transient occlusion of both common carotid arteries. Protein oxidation, as measured by protein carbonyl content, increased significantly during the reperfusion phase that followed 10 min of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 22 10 شماره
صفحات -
تاریخ انتشار 1991